Evaluation October 3rd

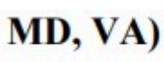
Here's some data on how many tickets D.C.'s traffic cameras handed out from Oct. 1, 2021 through March 31, 2022, and how many remain unpaid. As usual, Maryland drivers got the most tickets and had the most outstanding fines. (\$31 million worth, of the \$59 million in fines.)

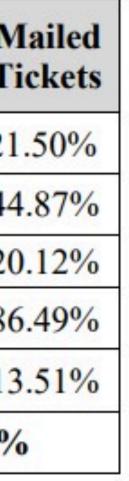
...

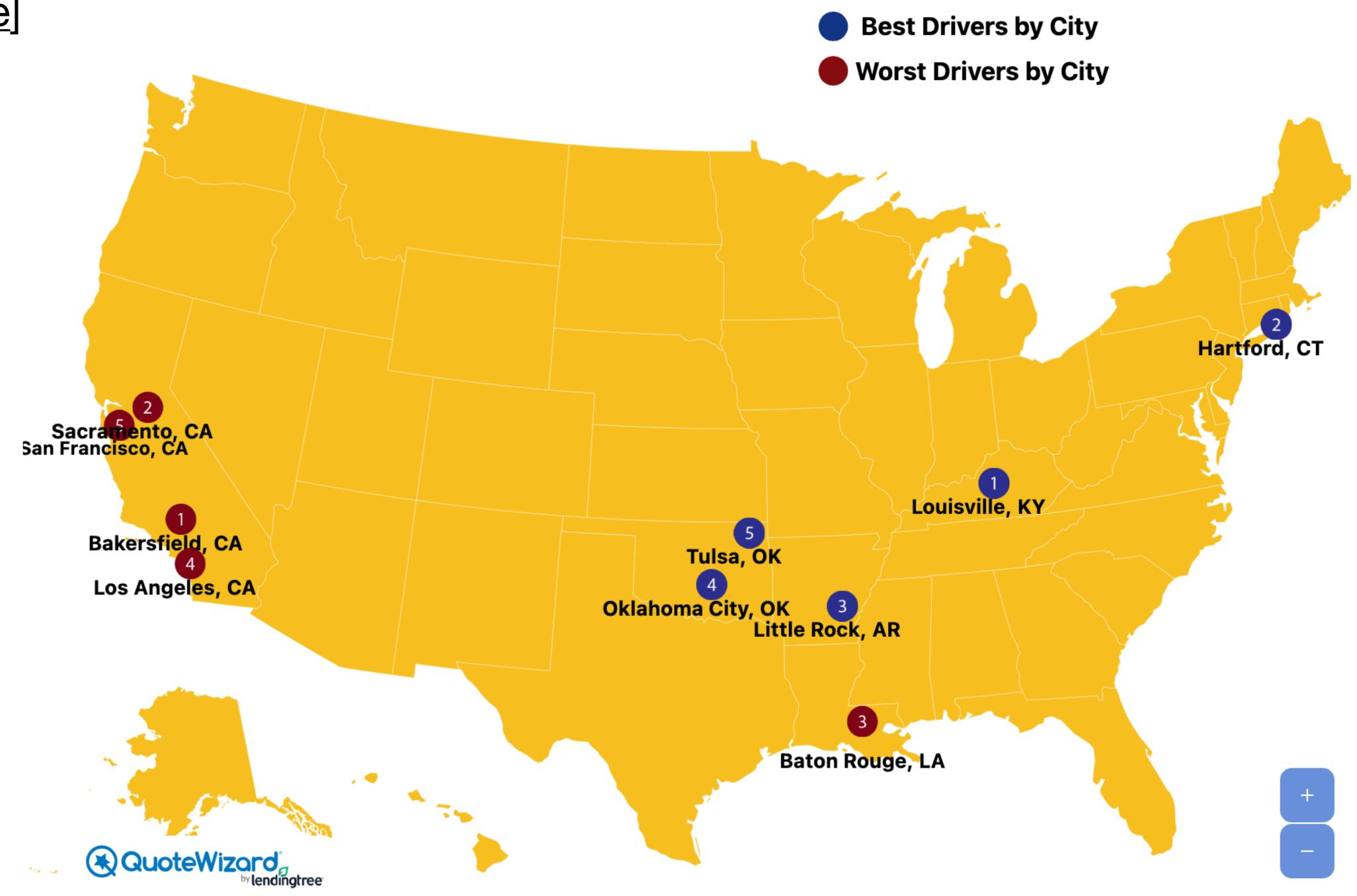
	State Area From 1		Outstand	ing Tickets with No Co	ollection - From 10/01
- ate)	Plate State	Tickets Cou	Plate State	Number of Tickets without Payments	Dollar Amounts to be Collected
			MD	145,618	\$31,881,075
L	DC	132,	VA	71,054	\$15,600,367
	MD	275,	DC	62,469	\$11,954,222
	VA	123,	ates	279,141	\$59,435,664
	Sub-Total	531.	tates	89.46%	8
rea	Sub-Total		Plate State	Number of Tickets without Payments	Dollar Amounts to be Collected
	Grand Total	614,	ıb Total	32,880	\$7,118,525
			nd Total	312,021	\$66,554,189

Table 7: Summary of Number of ATE Tickets Issued by Tri-State (DC, MD, VA) and Non-Tri-State Area From 10/01/2021 to 03/31/2022

Location (Tri- State/Non-Tri-State)	Plate State	Tickets Count	% Of N T
Tiout	DC	132,073	21
	MD	275,625	44
Tri-State Area	VA	123,573	20
	Sub-Total	531,271	80
Non-Tri-State Area	Sub-Total	82,956	13
	Grand Total	614,227	100%





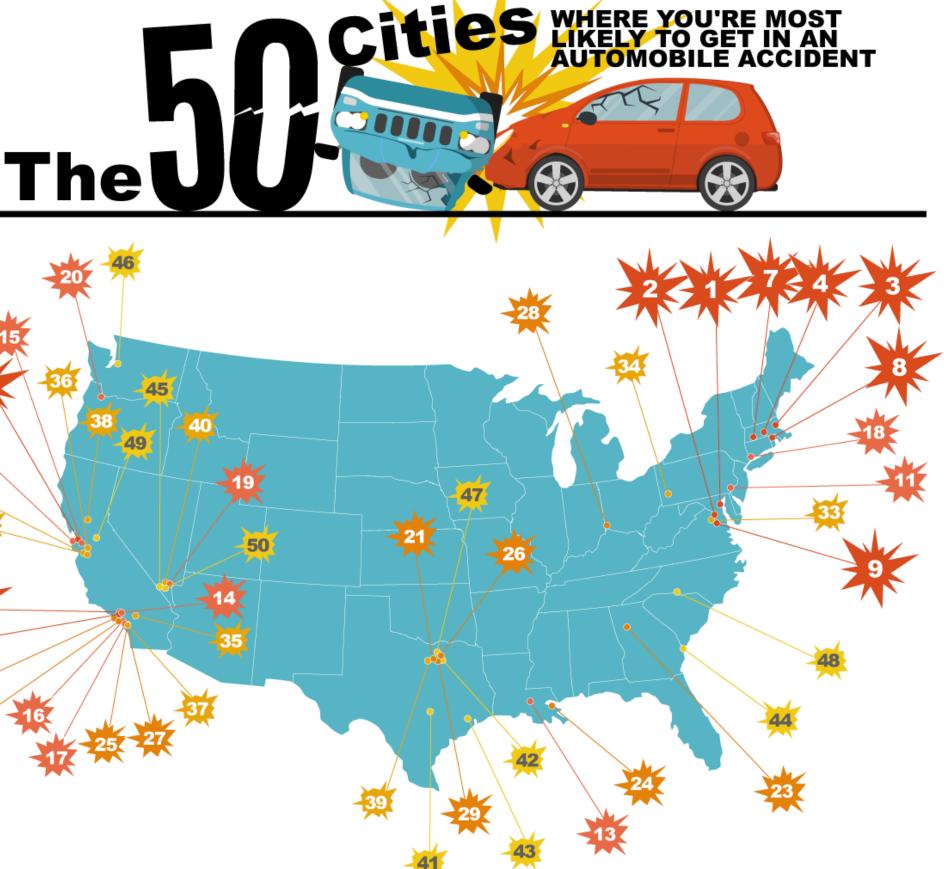


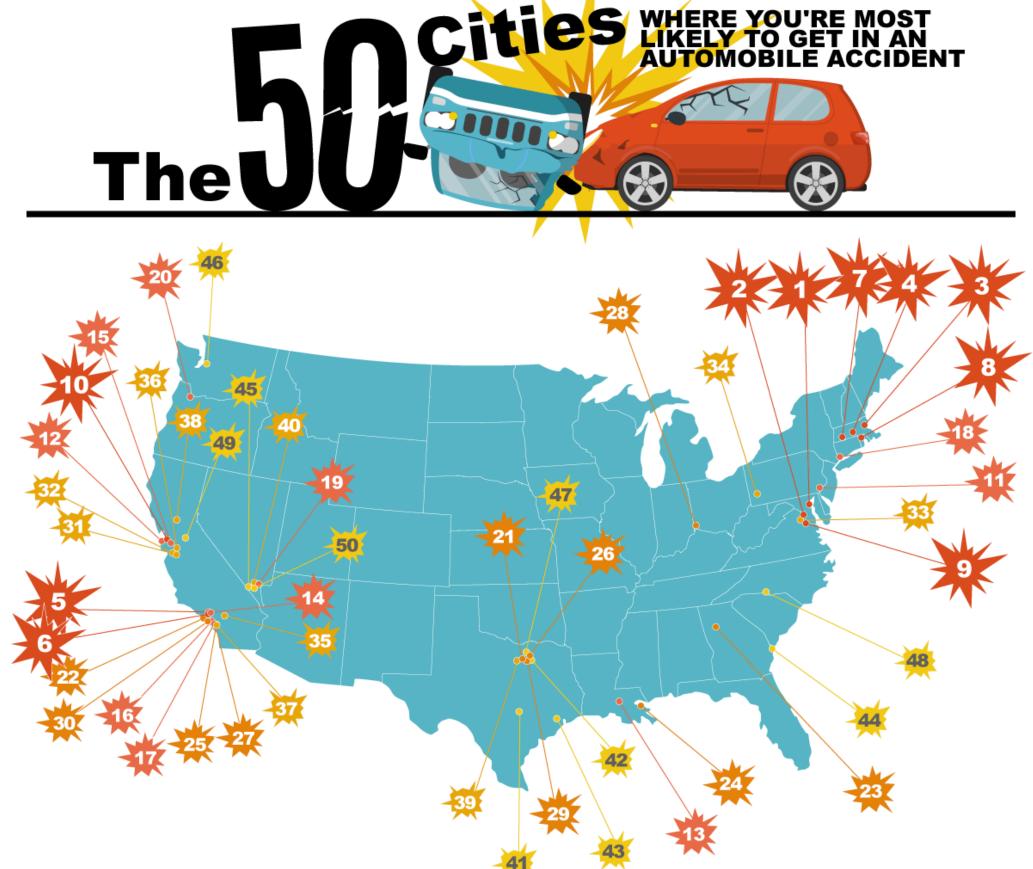
Driving factors include:

- Speeding Tickets
- Accidents
- DUIs

• Citations (running a red light, using a cellphone while driving, etc.)

[Source]





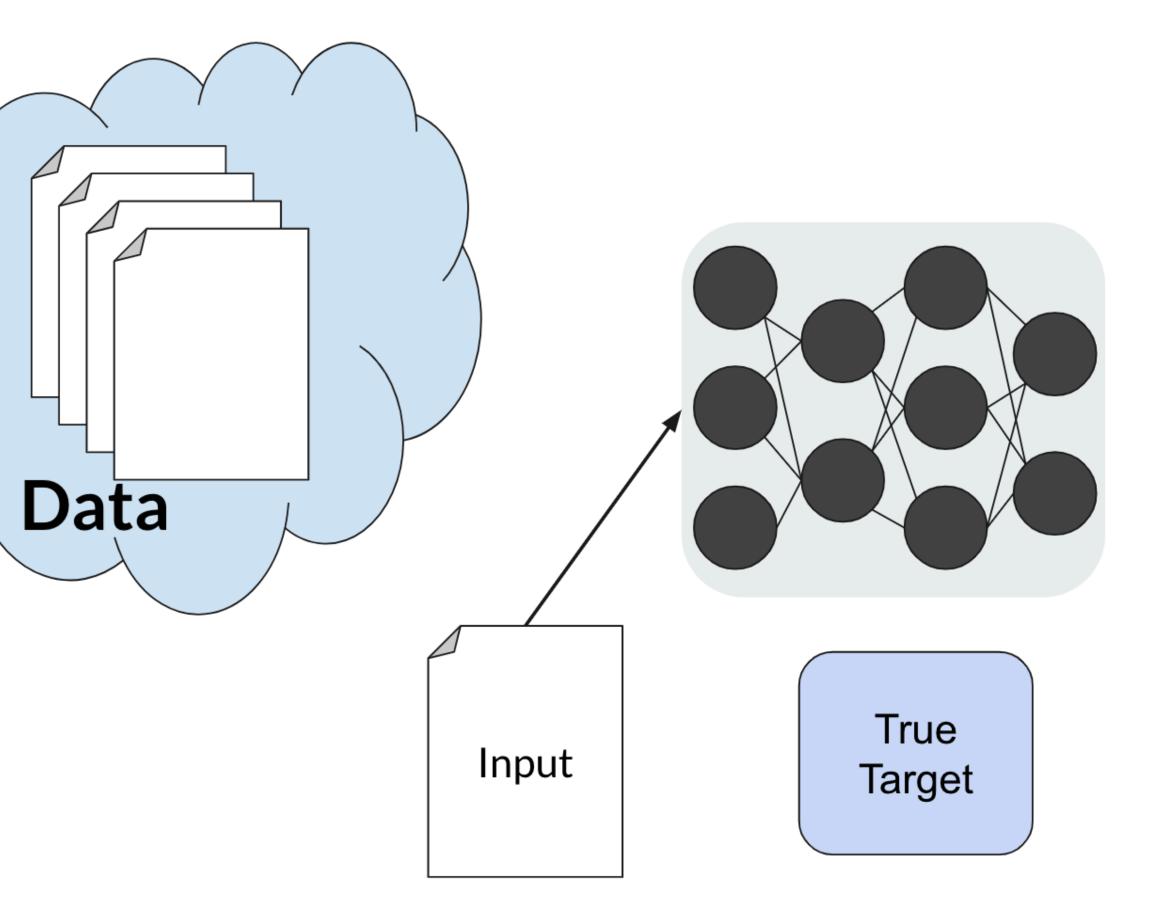
RANK	AVERAGE YEARS BETWEEN COLLISIONS	RELATIVE COLLISION LIKELIHOOD (Compared to National Average	HARD-BRAKING	RANKING Standardized for Population Density	RANKING Standardized for Annual Precipitation
		10.57	0		
 Baltimore, MD 	4.19	2 152.5%	30.58	z 🔊	
2 Washington, DC	4.36	142.3%	27.21	A .0	4
Boston, MA	4.89	142.3% 116.5% 105.6%	26.12	2.0	3
4 Worcester, MA	5.14	P 105.6%	26.87	A 3	4
5 Glendale, CA	5.31	2 99.0%	N/A	2.5	
6 Los Angeles, CA	5.81	99.0% 82.0% 81.7%	N/A	9	6
7 Springfield, MA	5.82		23.98	RAG	5
8 Providence, RI	6.19	70.8%	26.5	" 🥵	9
9 Alexandria, VA	6.22	§ 69.9%	27.48	FOR	8
10 Oakland, CA	6.31	67.7%	N/A		40

[Source]

Which U.S. City Has the Most Car Accidents?

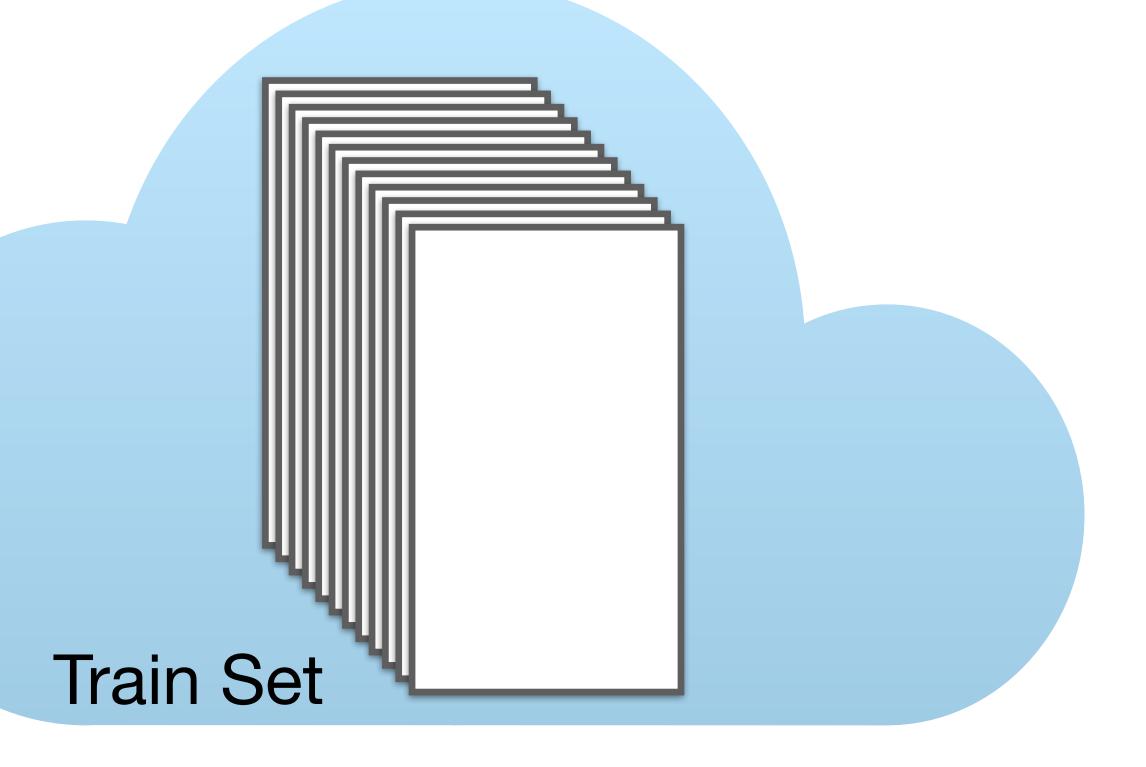
Baltimore, Maryland, ranks as the city with the most automobile accidents in the US. Drivers in Baltimore average one collision every 4.19 years, and there are 38.58 hard-breaking occurrences per 1,000 miles compared to the national average. What's more, Baltimore scores the lowest in standardizing the ranking for population density and annual precipitation, meaning the drivers themselves are more than likely at fault.

How do we evaluate our models?



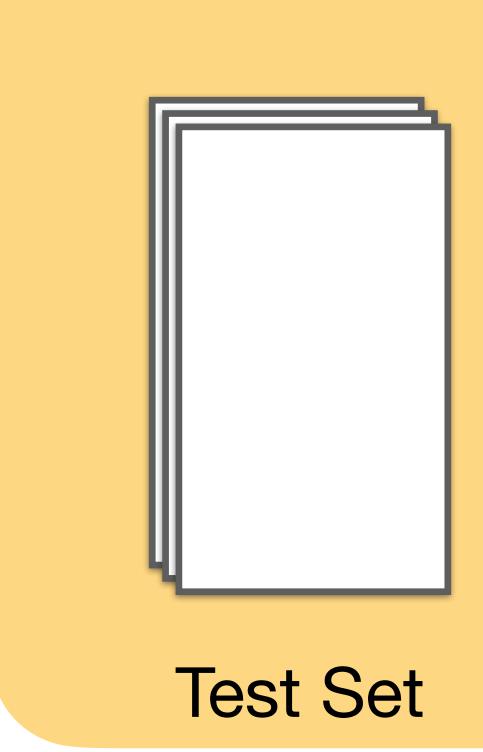
- Our model is being optimized to our dataset
- How do we know our model is learning the task and not just memorizing the data?

Data Splits



Data Splits

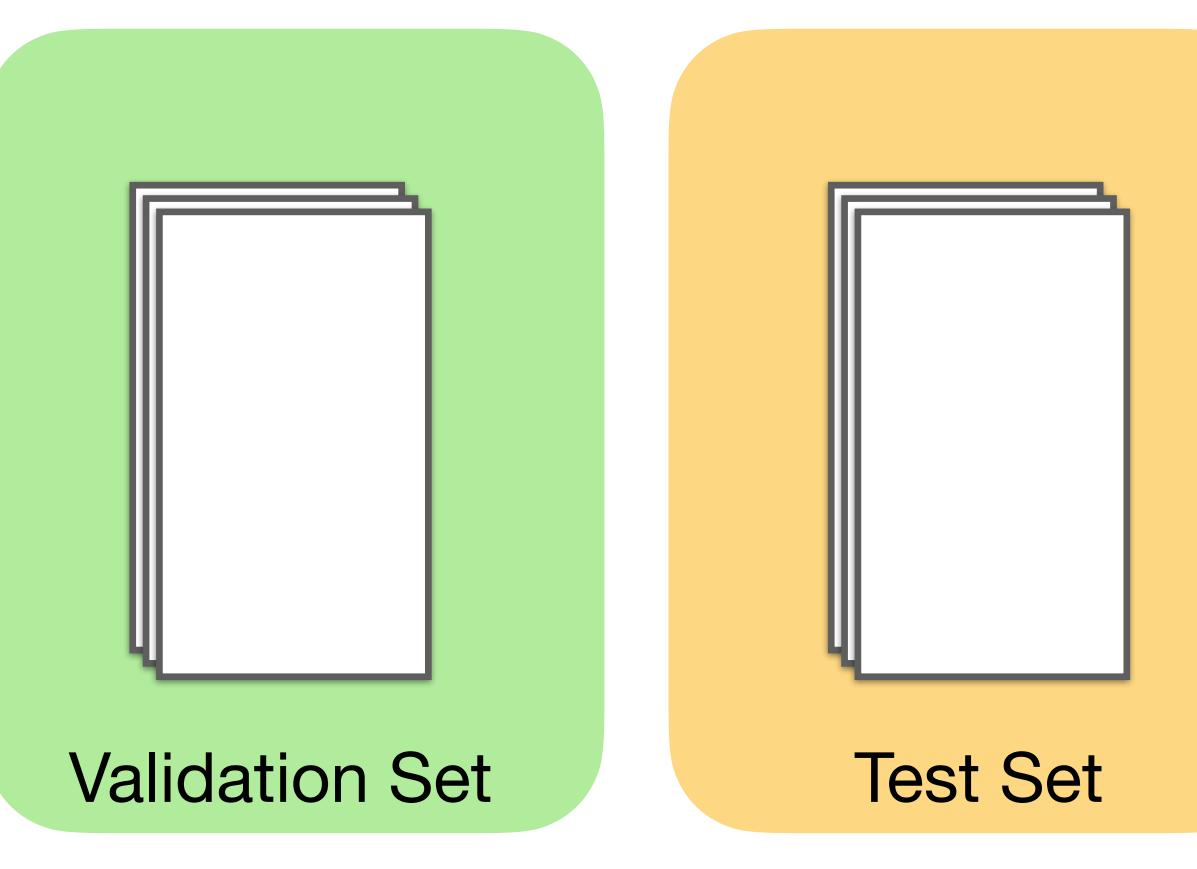
We separate a portion of our data for testing, that is unseen during training



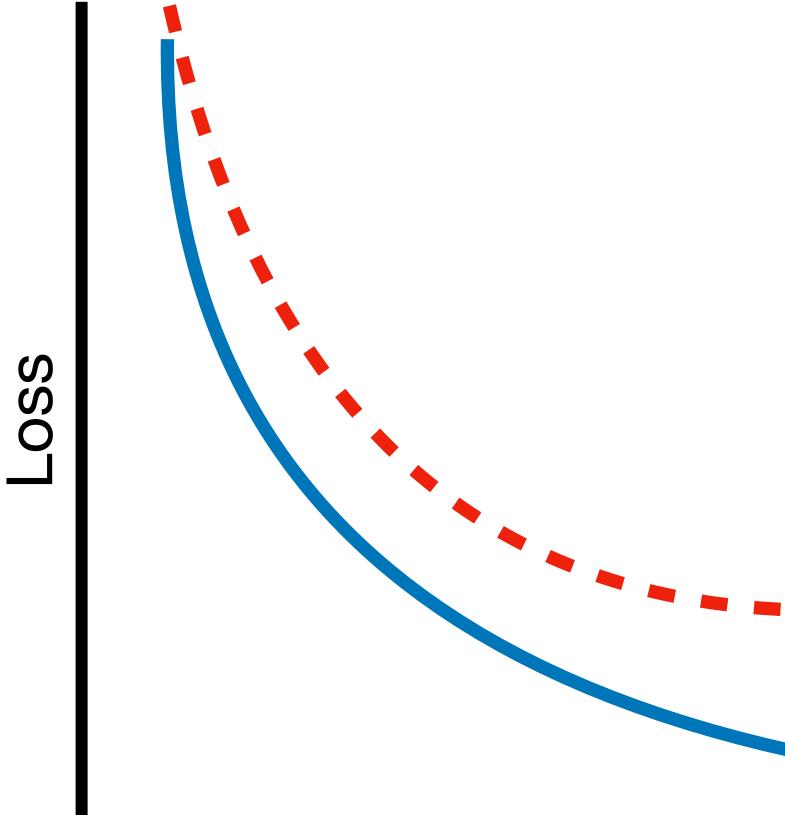
Data Splits

Train Set

We can also separate a portion of our data for validation, to tune our hyper parameters to



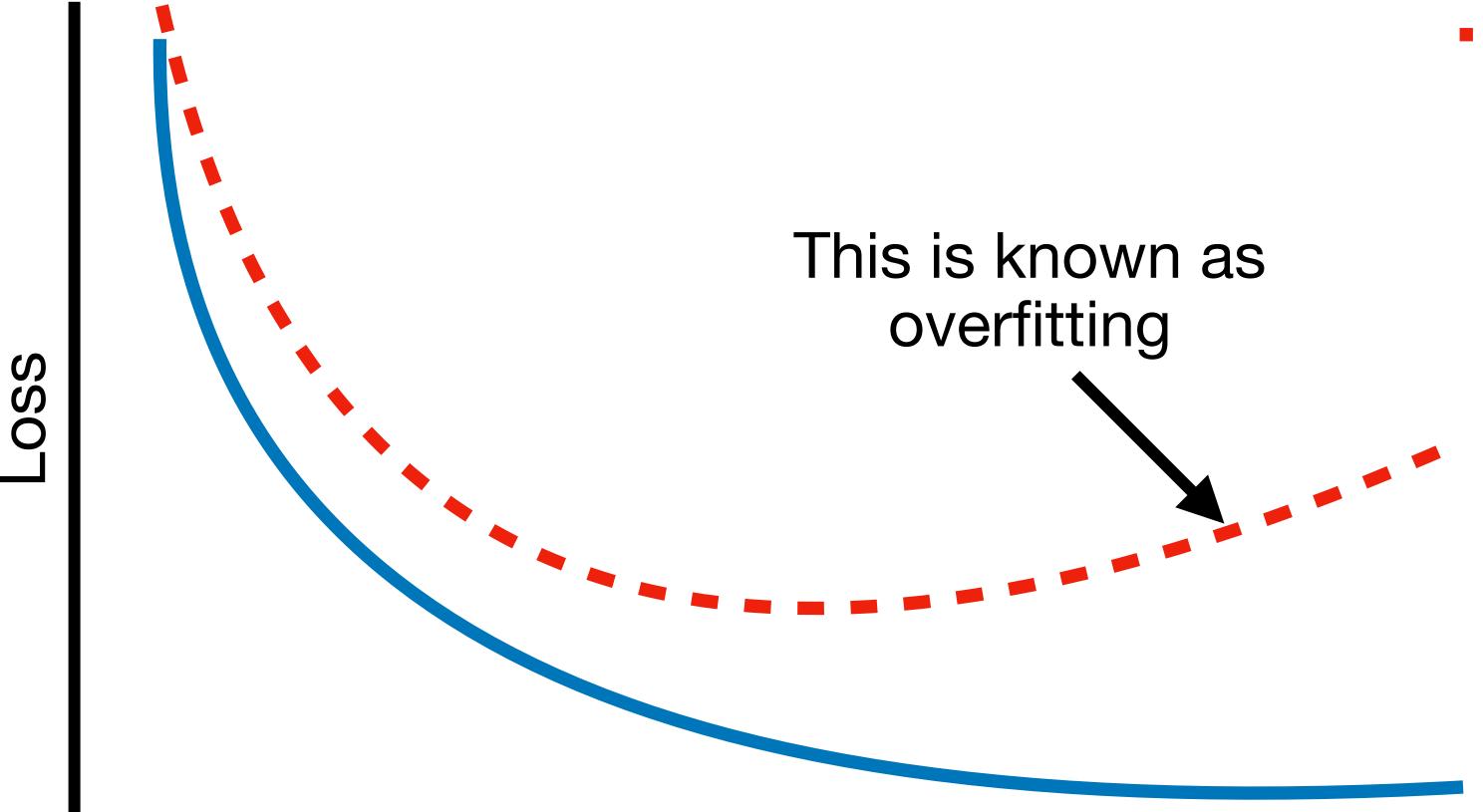
Train Validation Curve



Training Steps

Train Validation

Train Validation Curve



Train Validation

Training Steps

Training Process

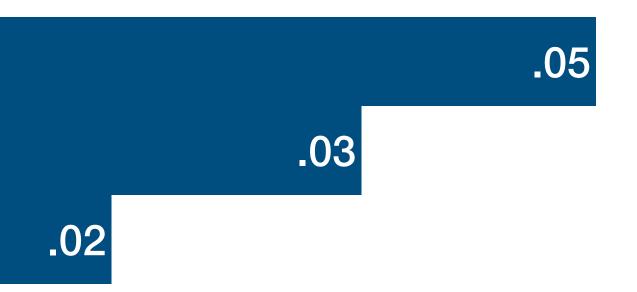
- 1. Train model and evaluate on validation dataset
- 2. Choose model checkpoint with the best performance on the validation dataset
- 3. Evaluate on test set

Langauge Modeling

Language Modeling

The cat sat on the

mat book table dragon

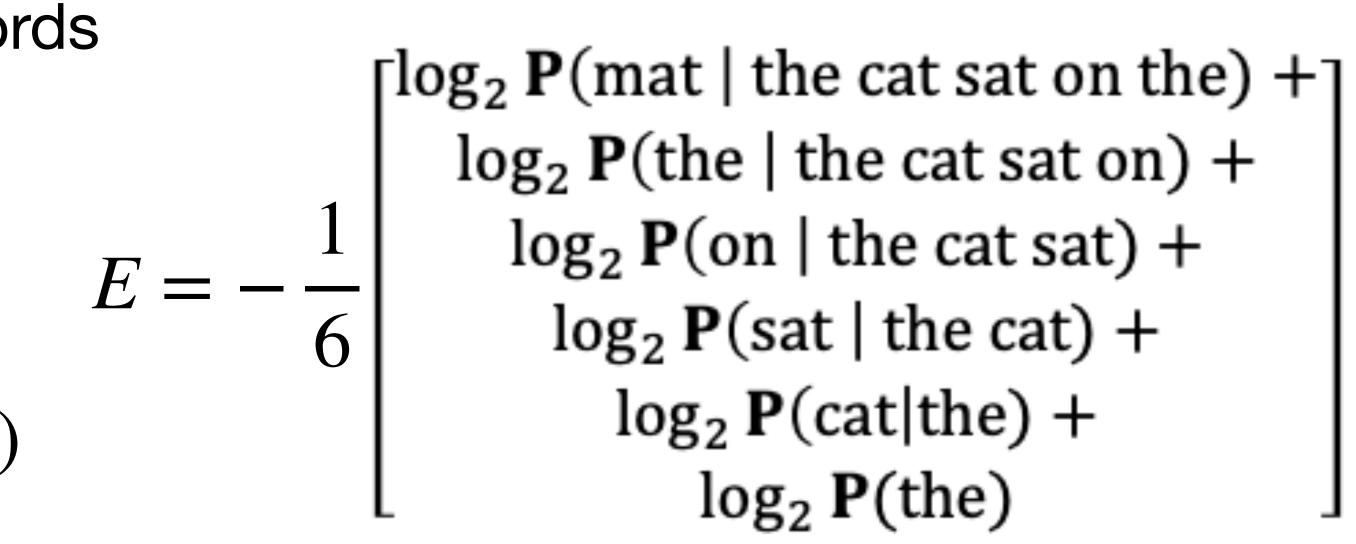


Perplexity [Adapted from Daniel Khashabi]

A measure if how well a probability distribution predicts a sample

Definition: for a document *D* with words W_1, \ldots, W_n :

$$ppl(D) = 2^{E}$$
 where
 $E = -\frac{1}{n} \sum_{i=1}^{n} \log_{2} P(w_{i} | w_{1}, \dots, w_{i-1})$



Perplexity Base Cases [Adapted from Daniel Khashabi]

Definition: for a document D with words w_1, \ldots, w_n :

$$ppl(D) = 2^E$$
 where $E = -\frac{1}{n} \sum_{i=1}^n \log_2 F$

If *P* is uninformative: $\forall w \in V : P(w_i | w_i)$

If P is exact: $P(w_i | w_{1:i-1}) = 1 \Rightarrow ppl2$

Perplexity ranges between 1 and |V|

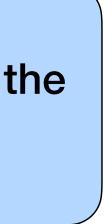
Lower perplexity is good!

- $P(W_i | W_1, \ldots, W_{i-1})$

$$w_{1:i-1}) = \frac{1}{|V|} \Rightarrow ppl(D) = 2^{-\frac{1}{2}n\log_2\frac{1}{|V|}} = |U|$$

 $2^{-\frac{1}{2}n\log_2 1} = 1$

Perplexity is a measure of a model's uncertainty about the next word ("average branching factor")



Perplexity in Different Models [Source]

Model	Perplexity
Interpolated Kneser-Ney 5-gram (Chelba et al., 2013)	67.6
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013)	51.3
RNN-2048 + BlackOut sampling (Ji et al., 2015)	68.3
Sparse Non-negative Matrix factorization (Shazeer et al., 2015)	52.9
LSTM-2048 (Jozefowicz et al., 2016)	43.7
2-layer LSTM-8192 (Jozefowicz et al., 2016)	30
Ours small (LSTM-2048)	43.9
Ours large (2-layer LSTM-2048)	39.8

Perplexity in Different Models [Source]

Model

LSTMs (Grave et al., 2017) QRNNs (Merity et al., 2018) Adaptive Transformer (Sukhbaatar e Local Transformer Adaptive Input (Baevski and Auli, 2 TransformerXL (Dai et al., 2019)

 $Routing \ Transformer$

	Layers	Heads	Perplexity
	-	-	40.8
	-	-	33.0
et al., 2019)	36	8	20.6
	16	16	19.8
2019)	16	16	18.7
	18	16	18.3
	10	16	15.8

Conditional Generative Tasks

Conditional Generation Tasks

- Which metric is most commonly used is often field specific
- Types of metrics
 - 1. Overlap based
 - 2. Similarity based
 - 3. Reference Free

Overlap Based Metrics

- Examples:
 - ROUGE
 - BLEU
 - METEOR

Calculate the overlap between a model's generation and a gold reference

ROUGE-N

How much of the reference is captured by the model's output?

number of n-grams in model and reference $recall = \cdot$

number of n-grams in reference

How much of the model's output is relevant? number of n-grams in model and reference precision = number of n-grams in model

$$F1 = 2 * \frac{\text{precision * recall}}{\text{precision + recall}}$$

ROUGE ranges between 0 and 1

Higher ROUGE is good!

ROUGE-1 Example

Reference

the fox jumped over the lazy dog

Model output

the brown fox jumped over the happy dog

recall =
$$\frac{\text{number of n-grams in model and reference}}{\text{number of n-grams in reference}}$$
$$= \frac{6}{7} = 0.85$$
$$\text{precision} = \frac{\text{number of n-grams in model and reference}}{\text{number of n-grams in model}}$$
$$= \frac{6}{8} = 0.75$$
$$\text{F1} = 2 * \frac{\text{precision * recall}}{\text{precision + recall}}$$
$$= 2 * \frac{0.85 * 0.75}{0.85 + 0.75} = 0.797$$

Э

Overlap Based Metrics

Pros

- Easy and quick to compute
- Easy to understand (interpretable)
- Not language specific

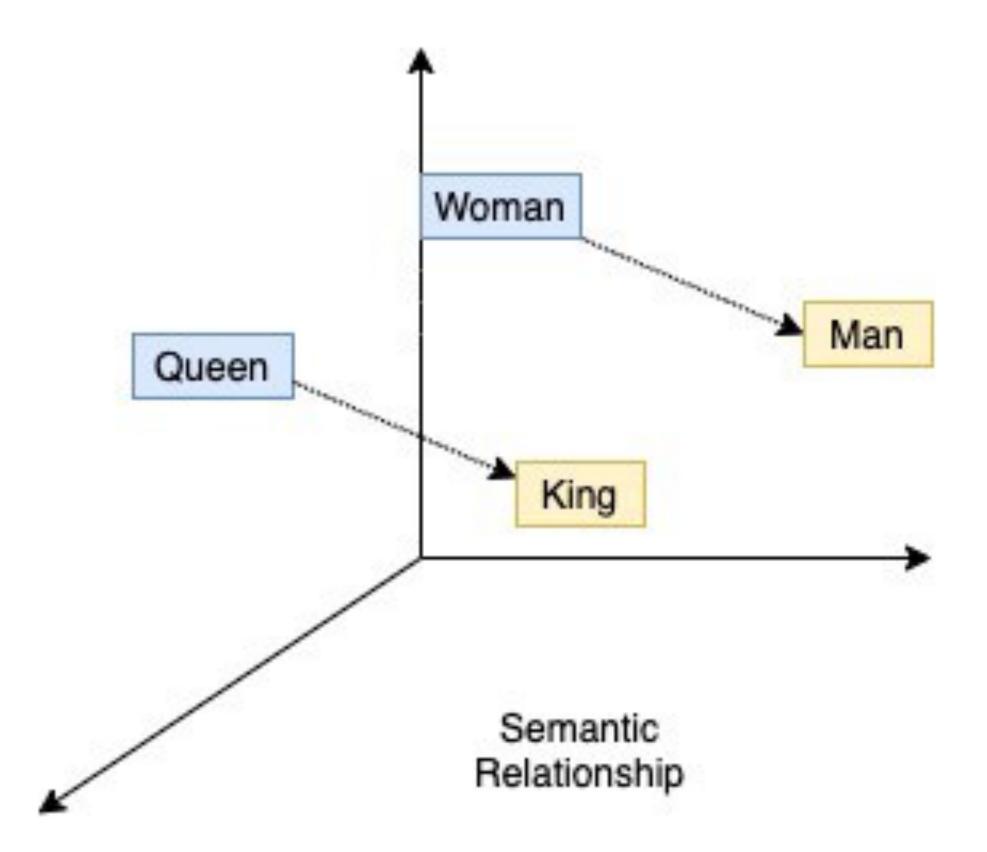
Cons

- Can be over-simplistic
- Difficult to capture nuances in language
- Requires annotated data

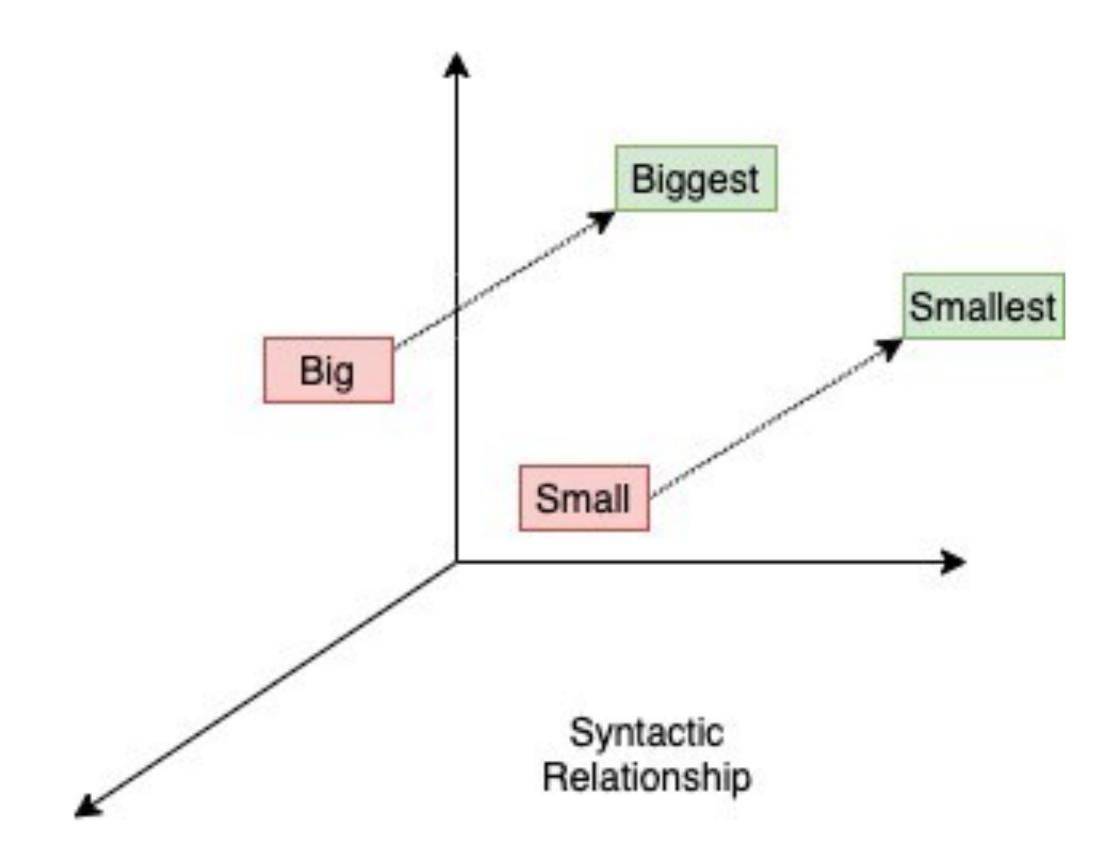
Similarity Based

- Computes the semantic similarity between the reference and the model output
- Examples:
 - Cosine Similarity
 - BERTScore
 - MoverScore

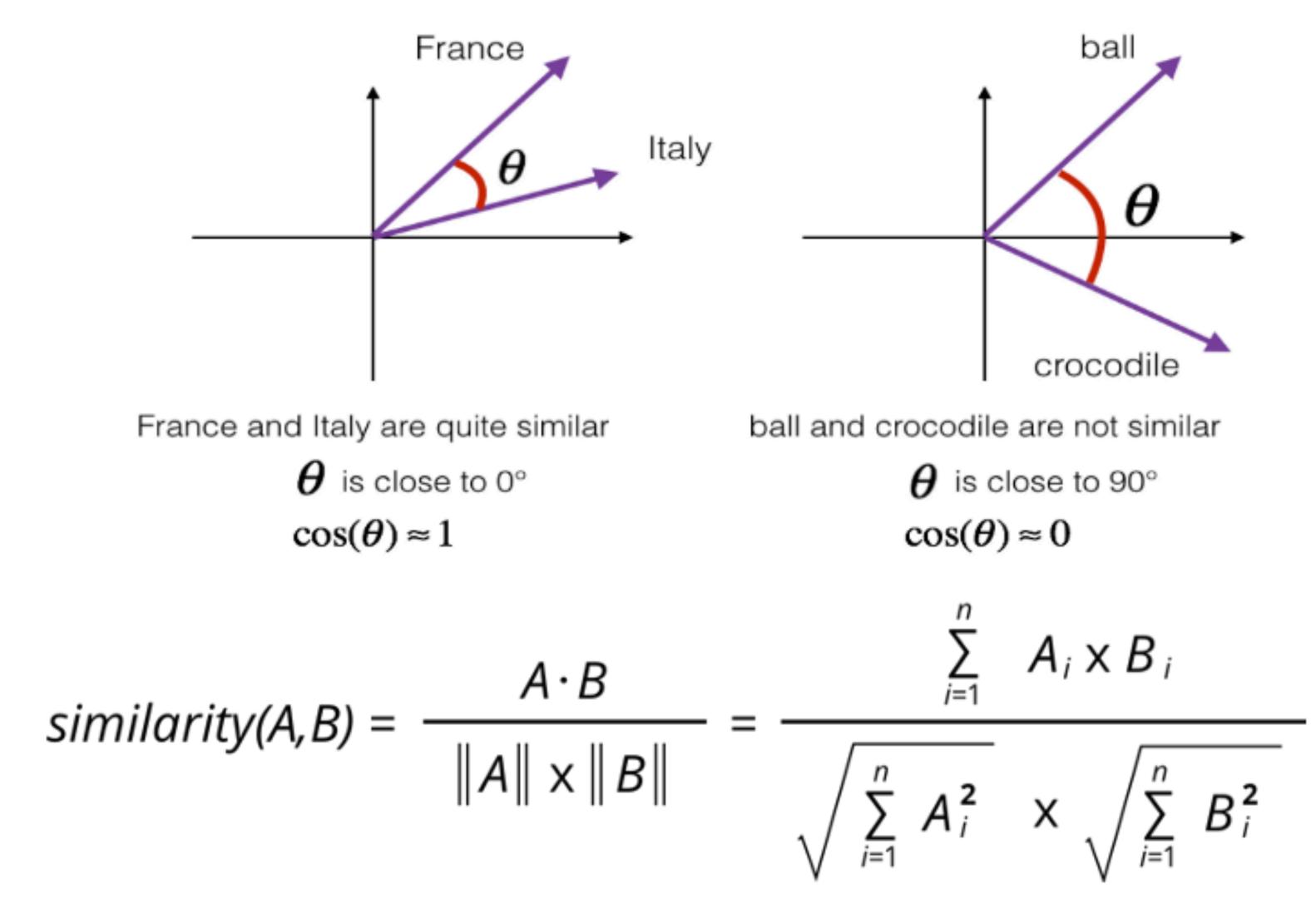
Recall: Embeddings



[Image Credit]

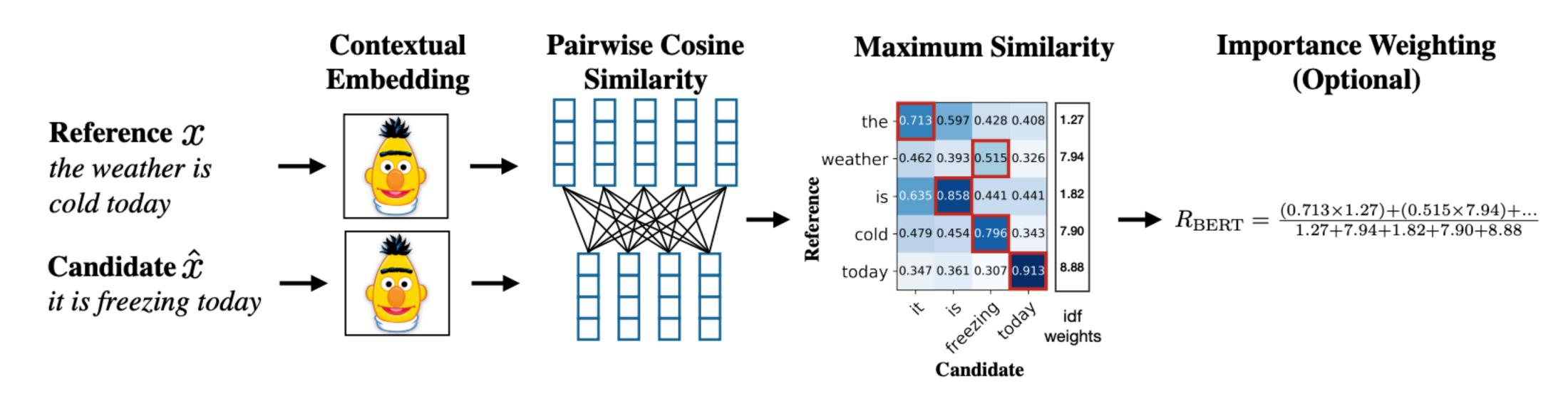


Cosine Similarity [Source]



France and Italy are quite similar

BERTScore [Source]



Similarity Based Metrics

Pros

- Better captures semantic similarities • Less interpretable
- Less sensitive to small changes in output
- Generally correlates better with human judgements than overlap metrics

Cons

- Relies on trained embeddings, which may be unreliable
- Often not available in all languages

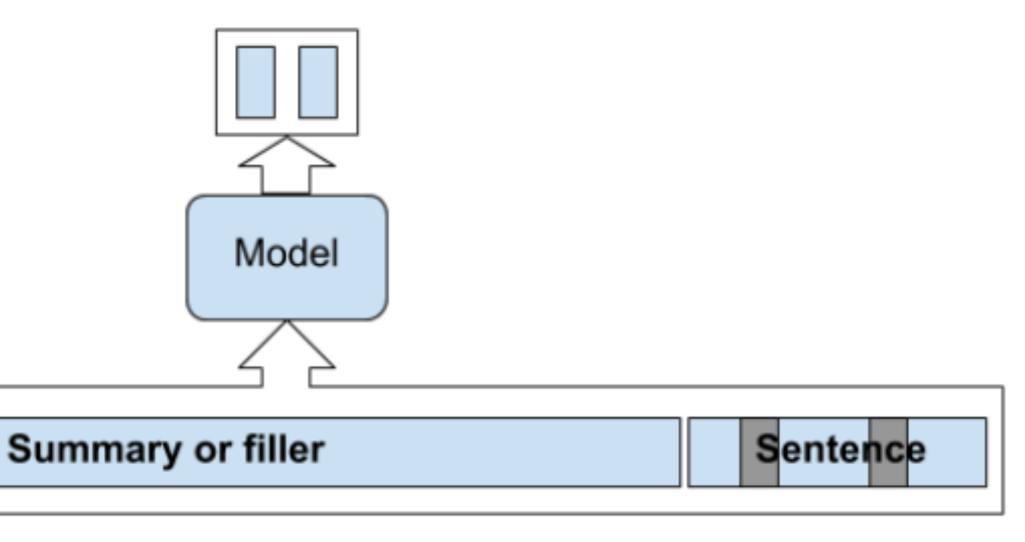
Reference Free Metrics

- Only relies on the input document
- Metrics are more task specific
 - OpenKiwi
 - BLANC
 - SUPERT

BLANC [Source]

- A reference free summarization metric
- Scores range from -1 to 1 and rate the "helpfulness" of a summary

 Give a language model a summary and a masked sentence from the original document, test how well the language model can reconstruct the sentence



Reference-free metrics

Pros

- Does not require gold references
- Generally correlates higher with human judgements than overlapbased metrics

Cons

- Less interpretable
- Need to design a different metric for each task
- Often not available in all languages

Human Evaluation

Human Evaluation

- Generally better estimation of quality than automatic metrics
- Can can be difficult to design/ expensive to collect
- Considerations when designing a human evaluation schema:
 - o How can we avoid biasing the annotators?
 - What do we care to capturing in the evaluation?
 - What background knowledge do our annotators need to have?

Comparative Evaluation

- For each example, sample two outputs (A & B) from different models
- Ask the annotator, do you prefer output A or output B?
- Considerations:
 - Captures relative preference
 - Easy to design
 - Does not easily capture minor differences
 - Does not account for both outputs being bad

Rate the quality of the generations

- Ask the annotator to rate the quality of a generation on a scale
- Difficult to define "quality" Detter to test for specific desired traits
 - Rate grammatically
 - Rate factual correctness

Breaking News! Posted last week

News Summarization and Evaluation in the Era of GPT-3

Tanya Goyal¹ Greg Durrett¹ Junyi Jessy Li²

¹ Department of Computer Science ² Department of Linguistics The University of Texas at Austin tanyagoyal@utexas.edu

Abstract

The recent success of zero- and few-shot prompting with models like GPT-3 has led to a paradigm shift in NLP research. In this paper, we study its impact on text summarization, focusing on the classic benchmark domain of news summarization. First, we investigate how zero-shot GPT-3 compares against finetuned models trained on large summarization datasets. We show that not only do humans overwhelmingly prefer GPT-3 summaries, but these also do not suffer from common datasetspecific issues such as poor factuality. Next, we study what this means for evaluation, particularly the role of gold standard test sets. Our experiments show that both reference-based and reference-free automatic metrics, e.g. recently proposed QA- or entailment-based factuality approaches, cannot reliably evaluate zero-shot summaries. Finally, we discuss future research challenges beyond generic summarization, specifically, keyword- and aspectbased summarization, showing how dominant fine-tuning approaches compare to zero-shot prompting.

CNN article: https://www.cnn.com/2022/09/09/politics/judge-throwsout-trumps-rico-lawsuit-against-hillary-clinton-and-democrats/index.html

Length-constrained prompt

Summarize the above article in 2 sentences.

GPT-3: Donald Trump's lawsuit against Hillary Clinton, the Democratic National Committee, and several other individuals and entities has been dismissed by a federal judge. The judge ruled that Trump's claims are unsupported by any legal authority and that many of his specific factual assertions are implausible or unsupported.

Keyword-constrained prompt

Summarize the above article briefly focusing on Alina Habba.

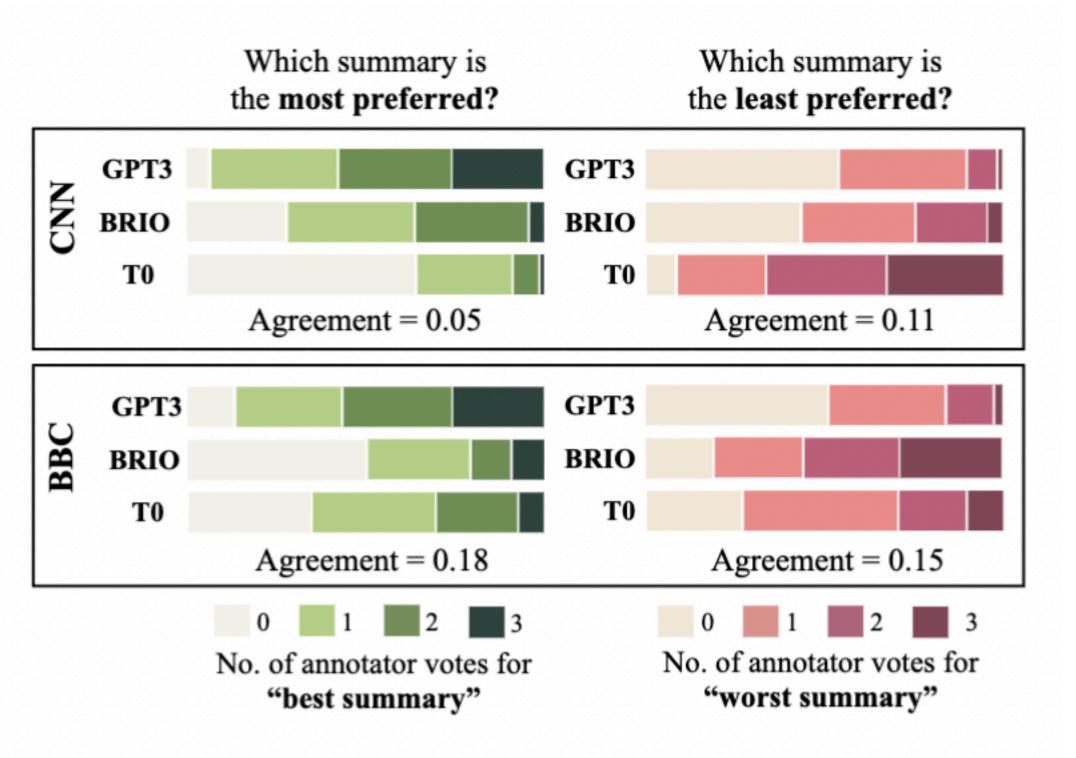
GPT-3: Alina Habba is an attorney for Donald Trump. She stated that Trump will "immediately move to appeal this decision." Habba also said that the judge's opinion is "rife with erroneous applications of the law" and that it "disregards the numerous independent governmental investigations which substantiate our claim that the defendants conspired to falsely implicate our client and undermine the 2016 Presidential election."

Figure 1: Examples of zero-shot summarization using GPT-3. We can generate summaries following style constraints or queries included in the prompts, allowing us to emulate a range of existing fine-tuned systems.

marizing data from a new source domain or producing a summary in a different style. The success of prompt-based models (GPT-3 (Brown et al., 2020), T0 (Sanh et al., 2022), PaLM (Chowdhery et al., 2022), etc.) provides an alternative approach,

Should we rethink evaluation? [Source]

- Found that humans prefer GPT-3 summaries to summaries from finetuned models
- Automatic metrics did not accurately capture this preference





Karson Elmgren @kelmgren · Sep 27

it turns out evaluation of language models is uh... complicated

Tanya Goyal @tanyaagoyal · Sep 27

🔆 New preprint 🔆

Zero-shot GPT-3 does *better* at news summarization than any of our fine-tuned models. Humans like these summaries better. But all of our metrics think they're MUCH worse.

Work/ w/ @jessyjli, @gregd_nlp. Check it out here: arxiv.org/abs/2209.12356 [1/6]

Show this thread

Xavier Amatriain 🥑 @xamat

"We need to rethink automatic evaluation". +100

Tanya Goyal @tanyaagoyal · Sep 27

🔆 New preprint 🤆

Zero-shot GPT-3 does *better* at news summarization than any of our fine-tuned models. Humans like these summaries better. But all of our metrics think they're MUCH worse.

Work/ w/ @jessyjli, @gregd_nlp. Check it out here: arxiv.org/abs/2209.12356 [1/6]

Show this thread

...

...

Just like we have a move towards data-centric AI, it might be time to rethink our evaluation metrics and make them more aligned with real-life goals

Good insight. Thanks for sharing @tanyaagoyal

🔆 New preprint 🤆

Zero-shot GPT-3 does *better* at news summarization than any of our fine-tuned models. Humans like these summaries better. But all of our metrics think they're MUCH worse.

Work/ w/ @jessyjli, @gregd_nlp. Check it out here: arxiv.org/abs/2209.12356 [1/6]

Show this thread

Sigh, once again I'm going to have to make a completely new set of slides next time I teach NLP

Greg Durrett @gregd_nlp · Sep 27

Check out Tanya's paper! GPT-3 is a huge paradigm shift for summarization that the community hasn't fully digested yet. You should play around with davinci-002 for your own summ tasks! If there's something you always wanted to do but didn't have data for, it might work zero-shot! twitter.com/tanyaagoyal/st...

...

Next Week

- Ethics
- Too Big?
 - https://dl.acm.org/doi/pdf/10.1145/3442188.3445922 lacksquare

• **Reading:** On the Dangers of Stochastic Parrots: Can Language Models Be